October 9, 2019

616 words 3 mins read

BayesWitnesses/m2cgen

BayesWitnesses/m2cgen

Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP) with zero dependencies

repo name BayesWitnesses/m2cgen
repo link https://github.com/BayesWitnesses/m2cgen
homepage
language Python
size (curr.) 384 kB
stars (curr.) 1513
created 2019-01-13
license MIT License

m2cgen

Build Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP, Dart).

Installation

Supported Python version is >= 3.5.

pip install m2cgen

Supported Languages

  • C
  • C#
  • Dart
  • Go
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Visual Basic

Supported Models

Classification Regression
Linear scikit-learnLogisticRegressionLogisticRegressionCVPassiveAggressiveClassifierPerceptronRidgeClassifierRidgeClassifierCVSGDClassifierlightningAdaGradClassifierCDClassifierFistaClassifierSAGAClassifierSAGClassifierSDCAClassifierSGDClassifier scikit-learnARDRegressionBayesianRidgeElasticNetElasticNetCVHuberRegressorLarsLarsCVLassoLassoCVLassoLarsLassoLarsCVLassoLarsICLinearRegressionOrthogonalMatchingPursuitOrthogonalMatchingPursuitCVPassiveAggressiveRegressorRANSACRegressor(only supported regression estimators can be used as a base estimator)RidgeRidgeCVSGDRegressorTheilSenRegressorStatsModelsGeneralized Least Squares (GLS)Generalized Least Squares with AR Errors (GLSAR)Ordinary Least Squares (OLS)Quantile Regression (QuantReg)Weighted Least Squares (WLS)lightningAdaGradRegressorCDRegressorFistaRegressorSAGARegressorSAGRegressorSDCARegressor
SVM scikit-learnLinearSVCNuSVCSVClightningKernelSVC (binary only, multiclass is not supported yet)LinearSVC scikit-learnLinearSVRNuSVRSVRlightningLinearSVR
Tree DecisionTreeClassifierExtraTreeClassifier DecisionTreeRegressorExtraTreeRegressor
Random Forest ExtraTreesClassifierLGBMClassifier(rf booster only)RandomForestClassifierXGBRFClassifier(binary only, multiclass is not supported yet) ExtraTreesRegressorLGBMRegressor(rf booster only)RandomForestRegressorXGBRFRegressor
Boosting LGBMClassifier(gbdt/dart/goss booster only)XGBClassifier(gbtree/gblinear booster only) LGBMRegressor(gbdt/dart/goss booster only)XGBRegressor(gbtree/gblinear booster only)

Classification Output

Linear/Linear SVM

Binary

Scalar value; signed distance of the sample to the hyperplane for the second class.

Multiclass

Vector value; signed distance of the sample to the hyperplane per each class.

Comment

The output is consistent with the output of LinearClassifierMixin.decision_function.

SVM

Binary

Scalar value; signed distance of the sample to the hyperplane for the second class.

Multiclass

Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

Comment

The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

Tree/Random Forest/XGBoost/LightGBM

Binary

Vector value; class probabilities.

Multiclass

Vector value; class probabilities.

Comment

The output is consistent with the output of the predict_proba method of DecisionTreeClassifier/ForestClassifier/XGBClassifier/LGBMClassifier.

Usage

Here’s a simple example of how a linear model trained in Python environment can be represented in Java code:

from sklearn.datasets import load_boston
from sklearn import linear_model
import m2cgen as m2c

boston = load_boston()
X, y = boston.data, boston.target

estimator = linear_model.LinearRegression()
estimator.fit(X, y)

code = m2c.export_to_java(estimator)

Generated Java code:

public class Model {

    public static double score(double[] input) {
        return (((((((((((((36.45948838508965) + ((input[0]) * (-0.10801135783679647))) + ((input[1]) * (0.04642045836688297))) + ((input[2]) * (0.020558626367073608))) + ((input[3]) * (2.6867338193449406))) + ((input[4]) * (-17.76661122830004))) + ((input[5]) * (3.8098652068092163))) + ((input[6]) * (0.0006922246403454562))) + ((input[7]) * (-1.475566845600257))) + ((input[8]) * (0.30604947898516943))) + ((input[9]) * (-0.012334593916574394))) + ((input[10]) * (-0.9527472317072884))) + ((input[11]) * (0.009311683273794044))) + ((input[12]) * (-0.5247583778554867));
    }
}

You can find more examples of generated code for different models/languages here.

CLI

m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

$ m2cgen <pickle_file> --language <language> [--indent <indent>] [--function_name <function_name>]
         [--class_name <class_name>] [--module_name <module_name>] [--package_name <package_name>]
         [--namespace <namespace>] [--recursion-limit <recursion_limit>]

Don’t forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

Piping is also supported:

$ cat <pickle_file> | m2cgen --language <language>

FAQ

Q: Generation fails with RuntimeError: maximum recursion depth exceeded error.

A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model’s class definition should solve the problem.

comments powered by Disqus