April 6, 2021

350 words 2 mins read

BlohmLab/NSCI801-QuantNeuro

BlohmLab/NSCI801-QuantNeuro

NSCI 801 (Queen's U) Quantitative Neuroscience course materials

repo name BlohmLab/NSCI801-QuantNeuro
repo link https://github.com/BlohmLab/NSCI801-QuantNeuro
homepage
language Jupyter Notebook
size (curr.) 77627 kB
stars (curr.) 88
created 2020-01-06
license Creative Commons Attribution 4.0 International

NSCI 801 - Quantitative Neuroscience

NSCI 801 (Queen’s U) Quantitative Neuroscience course materials

This course is in tutorial format using Python and Google Colab.

Syllabus

Introduction (Gunnar)

Intro Python (Joe)

Advanced Python (Joe)

Data collection / signal processing (Joe)

Statistics and Hypothesis testing - basics (Joe)

  • Descriptors: central tendencies (mean, median, mode), Spread (Range, variance, percentiles), Shape (skew, kurtosis)

  • Correlation / regression

  • The logic of hypothesis testing

  • Statistical significance

  • Multiple comparisons

  • Different test statistics

  • Confidence intervals

    Descriptive Statistic (NSCI801_Descriptive_stats.ipynb)

Statistics and Hypothesis testing - advanced (Joe)

Quantitative wet lab / bench methods (Joe)

Statistics and Hypothesis testing - Bayesian (Gunnar)

Models in Neuroscience (Gunnar)

Data Neuroscience overview (Gunnar)

Correlation vs causality (Gunnar)

Reproducibility, reliability, validity (Gunnar)

Further readings

comments powered by Disqus