ChenyangLEI/deep-video-prior
Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior
repo name | ChenyangLEI/deep-video-prior |
repo link | https://github.com/ChenyangLEI/deep-video-prior |
homepage | |
language | Python |
size (curr.) | 94075 kB |
stars (curr.) | 119 |
created | 2020-09-26 |
license | |
deep-video-prior (DVP)
Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior
Dependencey
Environment
This code is based on tensorflow. It has been tested on Ubuntu 18.04 LTS.
Anaconda is recommended: Ubuntu 18.04 | Ubuntu 16.04
After installing Anaconda, you can setup the environment simply by
conda env create -f environment.yml
Download VGG model
python download_VGG.py
Inference
Demo
bash tesh.sh
The results are placed in ./result
Use your own data
For the video with unimodal inconsistency:
python main_IRT.py --max_epoch 25 --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --model NAME_OF_YOUR_MODEL --with_IRT 0 --IRT_initialization 0 --output ./result/OWN_DATA
For the video with multimodal inconsistency:
python main_IRT.py --max_epoch 25 --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --model NAME_OF_YOUR_MODEL --with_IRT 1 --IRT_initialization 1 --output ./result/OWN_DATA
Citation
If you find this work useful for your research, please cite:
@inproceedings{lei2020dvp,
title={Blind Video Temporal Consistency via Deep Video Prior},
author={Lei, Chenyang and Xing, Yazhou and Chen, Qifeng},
booktitle={Advances in Neural Information Processing Systems},
year={2020}
}
Contact
Please contact me if there is any question (Chenyang Lei, leichenyang7@gmail.com)