June 24, 2020

310 words 2 mins read

iduta/pyconv

iduta/pyconv

Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition (https://arxiv.org/pdf/2006.11538.pdf)

repo name iduta/pyconv
repo link https://github.com/iduta/pyconv
homepage
language Python
size (curr.) 202 kB
stars (curr.) 89
created 2020-06-20
license MIT License

Pyramidal Convolution

Pyramidal Convolution: PyConv

This is a PyTorch implementation of “Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition” paper:

@article{duta2020pyramidal,
  author  = {Ionut Cosmin Duta and Li Liu and Fan Zhu and Ling Shao},
  title   = {Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition},
  journal = {arXiv preprint arXiv:2006.11538},
  year    = {2020},
}

The models trained on ImageNet can be found here.

PyConv is able to provide improved recognition capabilities over the baseline (see the paper for details).

The accuracy on ImageNet (using the default training settings):

Network 50-layers 101-layers 152-layers
ResNet 76.12% (model) 78.00% (model) 78.45% (model)
PyConvHGResNet 78.48% (model) 79.22% (model) 79.36% (model)
PyConvResNet 77.88% (model) 79.01% (model) 79.52% (model)

The accuracy on ImageNet can be significantly improved using more complex training settings (for instance, using additional data augmentation (CutMix), increase bach size to 1024, learning rate of 0.4, 300 epochs and use mixed precision to speed-up training):

Network test crop: 224×224 test crop: 320×320
PyConvResNet-50 (+augment) 79.44 80.59 (model)
PyConvResNet-101 (+augment) 80.58 81.49 (model)

Requirements

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

A fast alternative (without the need to install PyTorch and other deep learning libraries) is to use NVIDIA-Docker, we used this container image.

Training

To train a model (for instance, PyConvResNet with 50 layers) using DataParallel run main.py; you need also to provide result_path (the directory path where to save the results and logs) and the --data (the path to the ImageNet dataset):

result_path=/your/path/to/save/results/and/logs/
mkdir -p ${result_path}
python main.py \
--data /your/path/to/ImageNet/dataset/ \
--result_path ${result_path} \
--arch pyconvresnet \
--model_depth 50

To train using Multi-processing Distributed Data Parallel Training follow the instructions in the official PyTorch ImageNet training code.

comments powered by Disqus