laoqiren/mlhelper
Algorithms and utils for Machine Learning in JavaScript.
repo name | laoqiren/mlhelper |
repo link | https://github.com/laoqiren/mlhelper |
homepage | |
language | TypeScript |
size (curr.) | 2634 kB |
stars (curr.) | 653 |
created | 2017-10-10 |
license | MIT License |
mlhelper
Algorithms and utils for Machine Learning in JavaScript based on Node.js. while implementing commonly used machine learning algorithms, This library attempts to provide more abundant ecology, such as matrix and vector operations, file parsing, feature engineering, data visualization, and so on.
QQ Group
: 485305514
Installation
$ npm install mlhelper
Documention
Example
Algorithm
const AdaBoost = require('mlhelper/lib/algorithm').AdaBoost;
//or const AdaBoost = require('mlhelper').algorithm.AdaBoost;
const dataSet = [
[1.0,2.1],
[2.0,1.1],
[1.3,1.0],
[1.0,1.0],
[2.0,1.0]
]
const labels = [1.0,1.0,-1.0,-1.0,1.0];
let ada = new AdaBoost(dataSet,labels,40);
let result = ada.classify([[1.0,2.1],
[2.0,1.1],
[1.3,1.0],
[1.0,1.0],
[2.0,1.0]]);
console.log(result); // [ 1, 1, -1, -1, -1 ]
Utils
Matrix:
const Matrix = require('mlhelper/lib/utils').Matrix;
let m1 = new Matrix([
[1,2,3],
[3,4,5]
]);
let m2 = new Matrix([
[2,2,6],
[3,1,5]
]);
console.log(m2.sub(m1)) // Matrix { arr: [ [ 1, 0, 3 ], [ 0, -3, 0 ] ] }
console.log(m1.mult(m2)) // Matrix { arr: [ [ 2, 4, 18 ], [ 9, 4, 25 ] ] }
Vector:
const Vector = require('mlhelper/lib/utils').Vector;
let v = new Vector([5,10,7,1]);
console.log(v.argSort()) // [ 3, 0, 2, 1 ]
fileParser:
const parser = require('mlhelper/lib/utils').fileParser;
let dt = parser.read_csv(path.join(__dirname,'./train.csv'),{
index_col: 0,
delimiter: ',',
header: 0,
dataType: 'number'
});
let labels = dt.getClasses();
let dataSet =dt.drop('quality').values;
Feature Engineering
// preprocessing features
const preprocessing = require('mlhelper/lib/utils').features.preprocessing;
// make the features obey the standard normal distribution(Standardization)
let testStandardScaler = preprocessing.standardScaler(dataSet);
let testNormalize = preprocessing.normalize(dataSet);
let testBinarizer = preprocessing.binarizer(dataSet);
// ...
graph tools:
Decision Tree:
charts.drawDT(dt.getTree(),{
width:600,
height:400
});
logistic regression
charts.drawLogistic(dataSet,labels,weights);
Contribute
The original purpose of this project is to learn, and now I need more people to participate in this project, and any issue and good advice is welcome.
git clone
git clone https://github.com/laoqiren/mlhelper.git
install dependencies&&devdependecies
npm install
development
npm run dev
test
npm run test
build
npm run build
LICENSE
MIT.
You can use the project for any purpose, except for illegal activities.