Olow304/Data-Analysis-Science
The overall objective of this toolkit is to provide and offer a free collection of data analysis and machine learning that is specifically suited for doing data science. Its purpose is to get you started in a matter of minutes. You can run this collections either in Jupyter notebook or python alone.
repo name | Olow304/Data-Analysis-Science |
repo link | https://github.com/Olow304/Data-Analysis-Science |
homepage | |
language | Jupyter Notebook |
size (curr.) | 26168 kB |
stars (curr.) | 66 |
created | 2017-11-25 |
license | MIT License |
Complete-Data-Science-Toolkits
The overall objective of this toolkit is to provide and offer a free collection of data analysis and machine learning that is specifically suited for doing data science. Its purpose is to get you started in a matter of minutes. You can run this collections either in Jupyter notebook or python alone.
Features
Machine Learning
- Cross-Validation
- Evaluating Classification Metrics
- Evaluating Clustering Metrics
- Evaluating Regression Metrics
- Grid Search
- Preprocessing Encoding Categorical Features
- Preprocessing Binarization
- Preprocessing Imputing Missing Values
- Preprocessing Normalization
- Preprocessing StandardScaler
- Randomized Parameter Optimization
Numpy
- Adding, Removing, and Splitting Arrays
- Sorting arrays
- Matrix object
- Statistics Vector Math
- Structured Arrays
- Import, Export, Slicing, Indexing
- Data to from string
Pandas
- Complete pandas
- Groupby in Pandas
- Mapping
- Filtering
- Applying
Visualization
- BarPlots
- Customization Matplotlib
- Working with Image
- Working with text
Naming Conventions
- The naming convections I followed is:
- [yyyy-mm-dd-in-project-name-library].extention
- yyyy = stands for year
- mm = stands for month
- dd = stands for day
- in = my initial, for example: Saleban Olow = so
- library = numpy, pandas, sklearn, matplotlib
- project-name = each project name
- extention = .ipynb, .py, .html
- Example: 2017-25-11-so-cross-validation-sklearn.ipynb
Code Samples:
Cross Validation
from sklearn.model_selection import cross_val_score
model = SVC(kernel='linear', C=1)
# let's try it using cv
scores = cross_val_score(model, X, y, cv=5)
Grid Search
from sklearn.grid_search import GridSearchCV
params = {"n_neighbors": np.arange(1,5), "metric": ["euclidean", "cityblock"]}
grid = GridSearchCV(estimator=knn, param_grid=params)
grid.fit(X_train, y_train)
print(grid.best_score)
print(grid.best_estimator_.n_neighbors)
Preprocessing Imputing Missing Values
from sklearn.preprocessing import Imputer
impute = Imputer(missing_values = 0, strategy='mean', axis=0)
impute.fit_transform(X_train)
Randomized Parameter Optimization
from sklearn.grid_search import RandomizedSearchCV
params = {"n_neighbors" : range(1,5), "weights": ["uniform", "distance"]}
rsearch = RandomizedSearchCV(estimator=knn, param_distributions=params, cv=4, n_iter=8, random_state=5)
rsearch.fit(X_train, y_train)
print(rsearch.best_score_)
Model fitting supervised and unsupervised learning
#supervised learning
from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
#unsupervised learning
from sklearn.decomposition import PCA
pca = PCA(n_components=0.95)
pca_model = pca.fit_transform(X_train)
Working with numpy arrays
import numpy as np
#appends values to end of arr
np.append(arr, values)
#inserts values into arr before index 2
np.insert(arr, 2, values)
Indexing and Slicing arrays
import numpy as np
#return the element at index 5
arr = np.array([[1,2,3,4,5,6,7]])
arr[5]
#returns the 2D array element on index
arr[2,5]
#assign array element on index 1 the value 4
arr[1] = 4
#assign array element on index [1][3] the value 10
arr[1,3] = 10
Creating DataFrame
import pandas as pd
#specify values for each rows and columns
df = pd.DataFrame(
[[4,7,10],
[5,8,11],
[6,9,12]],
index=[1,2,3],
columns=['a','b','c'])
groupby pandas
import pandas as pd
import pandas as pd
#return a groupby object, grouped by values in column named 'cities'
df.groupby(by="Cities")
handling missing values
import pandas as pd
#drop rows with any column having NA/null data.
df.dropna()
#replace all NA/null data with value
df.fillna(value)
Melt function
import pandas as pd
#most pandas methods return a DataFrame so that
#this improves readability of code
df = (pd.melt(df)
.rename(columns={'old_name':'new_name', 'old_name':'new_name'})
.query('new_name >= 200')
)
Save plot
mport matplotlib.pyplot as plt
#saves plot/figure to image
plt.savefig('pic_name.png')
Marker, lines
import matplotlib.pyplot as plt
#add * for every data point
plt.plot(x,y, marker='*')
#adds dot for every data point
plt.plot(x,y, marker='.')
Figures, Axis
import matplotlib.pyplot as plt
#a container that contains all plot elements
fig = plt.figures()
#Initializes subplot
fig.add_axes()
#A subplot is an axes on a grid system, rows-cols num
a = fig.add_subplot(222)
#adds subplot
fig, b = plt.subplots(nrows=3, ncols=2)
#creates subplot
ax = plt.subplots(2,2)
Working with text plot
import matplotlib.pyplot as plt
#places text at coordinates 1/1
plt.text(1,1, 'Example text', style='italic')
#annotate the point with coordinates xy with text
ax.annotate('some annotation', xy=(10,10))
#just put math formula
plt.title(r'$delta_i=20$',fontsize=10)