tg-bomze/BabyGAN
StyleGAN-based predictor of children's faces from photos of theoretical parents.
repo name | tg-bomze/BabyGAN |
repo link | https://github.com/tg-bomze/BabyGAN |
homepage | |
language | Jupyter Notebook |
size (curr.) | 21410 kB |
stars (curr.) | 216 |
created | 2020-08-23 |
license | |
BabyGAN
Check how it works online:
Based on: StyleGAN
Encoder: StyleGAN-Encoder
Pre-train Models and dictionaries
Follow the LINK and add shortcut to Drive:
The folder structure should be:
.
├── data
│ └── finetuned_resnet.h5
├── karras2019stylegan-ffhq-1024x1024.pkl
├── shape_predictor_68_face_landmarks.dat.bz2
├── vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
├── vgg16_zhang_perceptual.pkl
└── ...
Prerequisites
- 64-bit Python 3.6 installation.
- TensorFlow 1.10.0 with GPU support.
- One or more high-end NVIDIA GPUs with at least 11GB of DRAM.
- NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer.
Generating latent representation of your images
You can generate latent representations of your own images using two scripts:
- Create folders for photos
mkdir raw_images aligned_images
- Extract and align faces from images
python align_images.py raw_images/ aligned_images/
- Find latent representation of aligned images
python encode_images.py aligned_images/ generated_images/ latent_representations/
Usage BabyGAN
- SOON