December 29, 2018

394 words 2 mins read

catboost/catboost

catboost/catboost

A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

repo name catboost/catboost
repo link https://github.com/catboost/catboost
homepage https://catboost.ai
language C++
size (curr.) 415857 kB
stars (curr.) 4897
created 2017-07-18
license Apache License 2.0

Website | Documentation | Tutorials | Installation | Release Notes

GitHub license PyPI version Conda Version GitHub issues Telegram

CatBoost is a machine learning method based on gradient boosting over decision trees.

Main advantages of CatBoost:

Gradient Boosting Survey

We want to make the best Gradient Boosting library in the world. Please, help us to do so! Complete our survey to help us understand what is important for GBDT users.

Get Started and Documentation

All CatBoost documentation is available here.

Install CatBoost by following the guide for the

Next you may want to investigate:

Catboost models in production

If you want to evaluate Catboost model in your application read model api documentation.

Questions and bug reports

Help to Make CatBoost Better

  • Check out help wanted issues to see what can be improved, or open an issue if you want something.
  • Add your stories and experience to Awesome CatBoost.
  • To contribute to CatBoost you need to first read CLA text and add to your pull request, that you agree to the terms of the CLA. More information can be found in CONTRIBUTING.md
  • Instructions for contributors can be found here.

News

Latest news are published on twitter.

Reference Paper

Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Ostroumova Prokhorenkova, Aleksandr Vorobev “Fighting biases with dynamic boosting”. arXiv:1706.09516, 2017.

Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin “CatBoost: gradient boosting with categorical features support”. Workshop on ML Systems at NIPS 2017.

License

© YANDEX LLC, 2017-2019. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.

comments powered by Disqus