November 27, 2020

10042 words 48 mins read

NiuTrans/ABigSurvey

NiuTrans/ABigSurvey

A collection of 400+ survey papers on Natural Language Processing (NLP) and Machine Learning (ML)

repo name NiuTrans/ABigSurvey
repo link https://github.com/NiuTrans/ABigSurvey
homepage
language
size (curr.) 1137 kB
stars (curr.) 946
created 2020-07-17
license GNU General Public License v3.0

A Survey of Surveys (NLP & ML)

In this document, we survey hundreds of survey papers on Natural Language Processing (NLP) and Machine Learning (ML). We categorize these papers into popular topics and do simple counting for some interesting problems. In addition, we show the list of the papers with urls (441 papers).

Categorization

We follow the ACL and ICML submission guideline of recent years, covering a broad range of areas in NLP and ML. The categorization is as follows:

  • Natural Language Processing
    • Computational Social Science and Social Media
    • Dialogue and Interactive Systems
    • Generation
    • Information Extraction
    • Information Retrieval and Text Mining
    • Interpretability and Analysis of Models for NLP
    • Knowledge Graph
    • Language Grounding to Vision, Robotics and Beyond
    • Linguistic Theories, Cognitive Modeling and Psycholinguistics
    • Machine Learning for NLP
    • Machine Translation
    • Natural Language Processing (General)
    • Named Entity Recognition (NER)
    • NLP Applications
    • Question Answering
    • Reading Comprehension
    • Recommender Systems
    • Resources and Evaluation
    • Semantics
    • Sentiment Analysis, Stylistic Analysis, and Argument Mining
    • Speech and Multimodality
    • Summarization
    • Syntax: Tagging, Chunking, Syntax and Parsing
    • Text Classification
  • Machine Learning
    • Architectures
    • AutoML
    • Bayesian Methods
    • Classification,Clustering,Regression
    • Curriculum Learning
    • Data Augmentation
    • Deep Learning - General Methods
    • Deep Reinforcement Learning
    • Federated Learning
    • Few-Shot and Zero-Shot Learning
    • General Machine Learning
    • Generative Adversarial Networks
    • Graph Neural Networks
    • Interpretability and Analysis
    • Meta Learning
    • Metric Learning
    • ML Applications
    • Model Compression and Acceleration
    • Multi-Task and Multi-View Learning
    • Online Learning
    • Optimization
    • Semi-Supervised and Unsupervised Learning
    • Transfer Learning
    • Trustworthy Machine Learning

To reduce class imbalance, we separate some of the hot sub-topics from the original categorization of ACL and ICML submissions. E.g., NER is a first-level area in our categorization because it is the focus of several surveys.

Statistics

We show the number of paper in each area in Figures 1-2.

Also, we plot paper number as a function of publication year (see Figure 3).

In addition, we generate word clouds to show hot topics in these surveys (see Figures 4-5).

The NLP Paper List

Computational Social Science and Social Media

  1. Computational Sociolinguistics: A Survey. Computational Linguistics 2015 paper bib

    Dong Nguyen, A Seza Dogruoz, Carolyn Penstein Rose, Franciska De Jong

Dialogue and Interactive Systems

  1. A Comparative Survey of Recent Natural Language Interfaces for Databases. VLDB Journal 2019 paper bib

    Katrin Affolter, Kurt Stockinger, Abraham Bernstein

  2. A Survey of Arabic Dialogues Understanding for Spontaneous Dialogues and Instant Message. International Journal on Natural Language Computing 2015 paper bib

    AbdelRahim A. Elmadany, Sherif M. Abdou, Mervat Gheith

  3. A Survey of Available Corpora for Building Data-Driven Dialogue Systems. Computer ence 2017 paper bib

    Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, Joelle Pineau

  4. A Survey of Document Grounded Dialogue Systems. arXiv 2020 paper bib

    Longxuan Ma, Wei-Nan Zhang, Mingda Li, Ting Liu

  5. A Survey of Natural Language Generation Techniques with a Focus on Dialogue Systems - Past, Present and Future Directions. arXiv 2019 paper bib

    Sashank Santhanam, Samira Shaikh

  6. A Survey on Dialog Management: Recent Advances and Challenges. arXiv 2020 paper bib

    Yinpei Dai, Huihua Yu, Yixuan Jiang, Chengguang Tang, Yongbin Li, Jian Sun

  7. A Survey on Dialogue Systems: Recent Advances and New Frontiers. Acm Sigkdd Explorations Newsletter 2017 paper bib

    Hongshen Chen, Xiaorui Liu, Dawei Yin, Jiliang Tang

  8. Challenges in Building Intelligent Open-domain Dialog Systems. ACM Transactions on Information Systems 2020 paper bib

    Minlie Huang, Xiaoyan Zhu, Jianfeng Gao

  9. Neural Approaches to Conversational AI. ACL 2018 paper bib

    Jianfeng Gao, Michel Galley, Lihong Li

  10. Recent Advances and Challenges in Task-oriented Dialog System. Under review of SCIENCE CHINA Technological Science (SCTS) 2020 paper bib

    Zheng Zhang, Ryuichi Takanobu, Minlie Huang, Xiaoyan Zhu

  11. Utterance-level Dialogue Understanding: An Empirical Study. arXiv 2020 paper bib

    Deepanway Ghosal, Navonil Majumder, Rada Mihalcea, Soujanya Poria

Generation

  1. A bit of progress in language modeling. Computer Speech & Language 2001 paper bib

    Joshua T. Goodman

  2. A Survey of Paraphrasing and Textual Entailment Methods. Journal of Artificial Intelligence Research 2010 paper bib

    Ion Androutsopoulos, Prodromos Malakasiotis

  3. A Survey of Knowledge-Enhanced Text Generation. arXiv 2020 paper bib

    Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, Meng Jiang

  4. A Survey on Neural Network Language Models. arXiv 2019 paper bib

    Kun Jing, Jungang Xu

  5. Evaluation of Text Generation: A Survey. arXiv 2020 paper bib

    Asli Celikyilmaz, Elizabeth Clark, Jianfeng Gao

  6. Neural Text Generation: Past, Present and Beyond. arXiv 2018 paper bib

    Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu

  7. Pre-trained Models for Natural Language Processing : A Survey. Science China Technological Sciences 2020 paper bib

    Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, Xuanjing Huang

  8. Recent Advances in Neural Question Generation. arXiv 2019 paper bib

    Liangming Pan, Wenqiang Lei, Tat-Seng Chua, Min-Yen Kan

  9. Recent Advances in SQL Query Generation: A Survey. International Conference on Informatics and Information Technologies 2020 paper bib

    Jovan Kalajdjieski, Martina Toshevska, Frosina Stojanovska

  10. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research 2018 paper bib

    Albert Gatt,Emiel Krahmer

Information Extraction

  1. A Survey of Deep Learning Methods for Relation Extraction. arXiv 2017 paper bib

    Shantanu Kumar

  2. A Survey of Event Extraction From Text. IEEE 2019 paper bib

    Wei Xiang, Bang Wang

  3. A Survey of Neural Network Techniques for Feature Extraction from Text. arXiv 2017 paper bib

    Vineet John

  4. A Survey on Open Information Extraction. COLING 2018 paper bib

    Christina Niklaus, Matthias Cetto, André Freitas, Siegfried Handschuh

  5. A Survey on Temporal Reasoning for Temporal Information Extraction from Text (Extended Abstract). Journal of Artificial Intelligence Research 2019 paper bib

    Artuur Leeuwenberg, Marie-Francine Moens

  6. Automatic Extraction of Causal Relations from Natural Language Texts: A Comprehensive Survey. arXiv 2016 paper bib

    Nabiha Asghar

  7. Content Selection in Data-to-Text Systems: A Survey. arXiv 2016 paper bib

    Dimitra Gkatzia

  8. Keyphrase Generation: A Multi-Aspect Survey. FRUCT 2019 paper bib

    Erion Cano, Ondrej Bojar

  9. More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction. arXiv 2020 paper bib

    Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yaoliang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou

  10. Neural relation extraction: a survey. arXiv 2020 paper bib

    Mehmet Aydar, Ozge Bozal, Furkan Ozbay

  11. Relation Extraction : A Survey. arXiv 2017 paper bib

    Sachin Pawar, Girish K. Palshikar, Pushpak Bhattacharyya

  12. Short Text Topic Modeling Techniques, Applications, and Performance: A Survey. arXiv 2019 paper bib

    Jipeng Qiang, Zhenyu Qian, Yun Li, Yunhao Yuan, Xindong Wu

Information Retrieval and Text Mining

  1. A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. arXiv 2017 paper bib

    Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut

  2. A survey of methods to ease the development of highly multilingual text mining applications. Language Resources and Evaluation 2012 paper bib

    Ralf Steinberger

  3. Opinion Mining and Analysis: A survey. IJNLC 2013 paper bib

    Arti Buche, M. B. Chandak, Akshay Zadgaonkar

Interpretability and Analysis of Models for NLP

  1. A Brief Survey and Comparative Study of Recent Development of Pronoun Coreference Resolution. arxiv 2020 paper bib

    Hongming Zhang, Xinran Zhao, Yangqiu Song

  2. A Survey of the State of Explainable AI for Natural Language Processing. AACL-IJCNLP 2020 paper bib

    Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, Prithviraj Sen

  3. Analysis Methods in Neural Language Processing: A Survey. NACCL 2018 paper bib

    Yonatan Belinkov, James R. Glass

  4. Analyzing and Interpreting Neural Networks for NLP:A Report on the First BlackboxNLP Workshop. EMNLP 2019 paper bib

    Afra Alishahi, Grzegorz Chrupala, Tal Linzen

  5. Beyond Leaderboards: A survey of methods for revealing weaknesses in Natural Language Inference data and models. arXiv 2020 paper bib

    Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro

  6. Visualizing Natural Language Descriptions: A Survey. ACM Computing Surveys 2016 paper bib

    Kaveh Hassani, Won-Sook Lee

  7. When do Word Embeddings Accurately Reflect Surveys on our Beliefs About People?. ACL 2020 paper bib

    Kenneth Joseph, Jonathan H. Morgan

  8. Which BERT? A Survey Organizing Contextualized Encoders. EMNLP 2020 paper bib

    Patrick Xia, Shijie Wu, Benjamin Van Durme

Knowledge Graph

  1. A survey of techniques for constructing chinese knowledge graphs and their applications. Sustainability 2018 paper bib

    Tianxing Wu, Guilin Qi, Cheng Li, Meng Wang

  2. A Survey on Graph Neural Networks for Knowledge Graph Completion. arXiv 2020 paper bib

    Siddhant Arora

  3. A Survey on Knowledge Graph-Based Recommender Systems. arXiv 2020 paper bib

    Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, Qing He

  4. A Survey on Knowledge Graphs: Representation, Acquisition and Applications. arXiv 2020 paper bib

    Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu

  5. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. arXiv 2016 paper bib

    Andrea Rossi, Donatella Firmani, Antonio Matinata, Paolo Merialdo, Denilson Barbosa

  6. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE 2017 paper bib

    Quan Wang, Zhendong Mao, Bin Wang, Li Guo

  7. Knowledge Graphs. arXiv 2020 paper bib

    Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, Antoine Zimmermann

  8. Survey on Domain Knowledge Graph Research. 计算机系统应用 2020 paper bib

    刘烨宸, 李华昱

Language Grounding to Vision and Robotics and Beyond

  1. Emotionally-Aware Chatbots: A Survey. arXiv 2018 paper bib

    Endang Wahyu Pamungkas

  2. Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods. arXiv 2019 paper bib

    Aditya Mogadala, Marimuthu Kalimuthu, Dietrich Klakow

Linguistic Theories and Cognitive Modeling and Psycholinguistics

  1. Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing. Computational Linguistics 2019 paper bib

    Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, Anna Korhonen

  2. Survey on the Use of Typological Information in Natural Language Processing. COLING 2016 paper bib

    Helen O’Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Anna Korhonen

Machine Learning for NLP

  1. A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recognition 2017 paper bib

    Sebastien Eskenazi, Petra Gomez-Krämer, Jean-Marc Ogier

  2. A Primer on Neural Network Models for Natural Language Processing. Computer ence 2015 paper bib

    Yoav Goldberg

  3. A Survey Of Cross-lingual Word Embedding Models. Journal of Artificial Intelligence Research 2019 paper bib

    Sebastian Ruder, Ivan Vulic, Anders Sogaard

  4. A Survey of Neural Networks and Formal Languages. arXiv 2020 paper bib

    Joshua Ackerman, George Cybenko

  5. A Survey of the Usages of Deep Learning in Natural Language Processing. IEEE 2018 paper bib

    Daniel W. Otter, Julian R. Medina, Jugal K. Kalita

  6. A Survey on Contextual Embeddings. arXiv 2020 paper bib

    Qi Liu, Matt J. Kusner, Phil Blunsom

  7. A Survey on Transfer Learning in Natural Language Processing. 2020 paper bib

    Alyafeai, Zaid and Alshaibani, Maged Saeed and Ahmad, Irfan

  8. Adversarial Attacks and Defense on Texts: A Survey. arXiv 2020 paper bib

    Aminul Huq, Mst. Tasnim Pervin

  9. Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey. ACM Transactions on Information Systems 2019 paper bib

    Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, Chenliang Li

  10. An Introductory Survey on Attention Mechanisms in NLP Problems. IntelliSys 2019 paper bib

    Dichao Hu

  11. Attention in Natural Language Processing. arXiv 2019 paper bib

    Andrea Galassi, Marco Lippi, Paolo Torroni

  12. From static to dynamic word representations: a survey. International Journal of Machine Learning and Cybernetics 2020 paper bib

    Yuxuan Wang, Yutai Hou, Wanxiang Che, Ting Liu

  13. From Word to Sense Embeddings: A Survey on Vector Representations of Meaning. Journal of Artificial Intelligence Research 2018 paper bib

    Jose Camachocollados, Mohammad Taher Pilehvar

  14. Natural Language Processing Advancements By Deep Learning: A Survey. arXiv 2020 paper bib

    Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, Edward A. Fox

  15. Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering. COLING 2018 paper bib

    Wuwei Lan,Wei Xu

  16. Recent Trends in Deep Learning Based Natural Language Processing. IEEE 2018 paper bib

    Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria

  17. Symbolic, Distributed and Distributional Representations for Natural Language Processing in the Era of Deep Learning: a Survey. Frontiers Robotics AI 2017 paper bib

    Lorenzo Ferrone, Fabio Massimo Zanzotto

  18. Syntax Representation in Word Embeddings and Neural Networks – A Survey. ITAT 2020 paper bib

    Tomasz Limisiewicz and David Marecek

  19. Towards a Robust Deep Neural Network in Texts: A Survey. arXiv 2020 paper bib

    Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, Aoshuang Ye

  20. Word Embeddings: A Survey. arXiv 2019 paper bib

    Felipe Almeida, Geraldo Xexeo

Machine Translation

  1. A Brief Survey of Multilingual Neural Machine Translation. Computing surveys 2019 paper bib

    Raj Dabre, Chenhui Chu, Anoop Kunchukuttan

  2. A Comprehensive Survey of Multilingual Neural Machine Translation. Under review at the computing surveys journal 2020 paper bib

    Raj Dabre, Chenhui Chu, Anoop Kunchukuttan

  3. A Survey of Deep Learning Techniques for Neural Machine Translation. arXiv 2020 paper bib

    Shuoheng Yang, Yuxin Wang, Xiaowen Chu

  4. A Survey of Domain Adaptation for Neural Machine Translation. COLING 2018 paper bib

    Chenhui Chu, Rui Wang

  5. A Survey of Methods to Leverage Monolingual Data in Low-resource Neural Machine Translation. ICATHS 2019 paper bib

    Ilshat Gibadullin, Aidar Valeev, Albina Khusainova, Adil Mehmood Khan

  6. A Survey of Multilingual Neural Machine Translation. Computing Surveys 2020 paper bib

    Raj Dabre, Chenhui Chu, Anoop Kunchukuttan

  7. A Survey of Orthographic Information in Machine Translation. arXiv 2020 paper bib

    Bharathi Raja Chakravarthi, Priya Rani, Mihael Arcan, John P. McCrae

  8. A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena. Computational Linguistics 2016 paper bib

    Arianna Bisazza, Marcello Federico

  9. A Survey on Document-level Machine Translation: Methods and Evaluation. under review at an international journal 2019 paper bib

    Sameen Maruf, Fahimeh Saleh, Gholamreza Haffari

  10. A Survey on Large-scale Machine Learning. arXiv 2020 paper bib

    Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, Xindong Wu

  11. Machine Translation Approaches and Survey for Indian Languages. Computational Linguistics 2017 paper bib

    Nadeem Jadoon Khan, Waqas Anwar, Nadir Durrani

  12. Machine Translation Evaluation Resources and Methods: A Survey. arXiv 2016 paper bib

    Lifeng Han

  13. Machine Translation using Semantic Web Technologies: A Survey. Journal of Web Semantics 2018 paper bib

    Diego Moussallem, Matthias Wauer, Axelcyrille Ngonga Ngomo

  14. Machine-Translation History and Evolution: Survey for Arabic-English Translations. Current Journal of Applied Science & Technology 2017 paper bib

    Nabeel T. Alsohybe, Neama Abdulaziz Dahan, Fadl Mutaher Baalwi

  15. Multimodal Machine Translation through Visuals and Speech. Springer 2019 paper bib

    Umut Sulubacak, Ozan Caglayan, Stig-Arne Gronroos, Aku Rouhe, Desmond Elliott, Lucia Specia, Jörg Tiedemann

  16. Neural Machine Translation and Sequence-to-Sequence Models: A Tutorial. arXiv 2017 paper bib

    Graham Neubig

  17. Neural Machine Translation: A Review. arXiv 2019 paper bib

    Felix Stahlberg

  18. Neural Machine Translation: Challenges, Progress and Future. Science China Technological Sciences 2020 paper bib

    Jiajun Zhang, Chengqing Zong

  19. The Query Translation Landscape: a Survey. arXiv 2019 paper bib

    Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Soren Auer, Jens Lehmann

  20. 神经机器翻译前沿综述. 中文信息学报 2020 paper bib

    冯洋, 邵晨泽

Natural Language Processing

  1. A Survey and Classification of Controlled Natural Languages. Computational Linguistics 2014 paper bib

    Tobias Kuhn

  2. A Survey on Recognizing Textual Entailment as an NLP Evaluation. arXiv 2020 paper bib

    Adam Poliak

  3. Automatic Arabic Dialect Identification Systems for Written Texts: A Survey. arxiv 2020 paper bib

    Maha J. Althobaiti

  4. Jumping NLP curves: A review of natural language processing research. IEEE 2014 paper bib

    Erik Cambria, Bebo White

  5. Natural Language Processing - A Survey. arXiv 2012 paper bib

    Kevin Mote

  6. Natural Language Processing: State of The Art, Current Trends and Challenges. arXiv 2017 paper bib

    Diksha Khurana, Aditya Koli, Kiran Khatter, Sukhdev Singh

  7. Progress in Neural NLP: Modeling, Learning, and Reasoning. Engineering 2020 paper bib

    Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung Shum

  8. Recent trends in deep learning based natural language processing. ieee 2018 paper bib

    T Young, D Hazarika, S Poria

  9. Survey of Network Representation Learning. Computer Science 2020 paper bib

    Ding Yu, Wei Hao, Pan Zhi-Song, Liu Xin

NER

  1. A survey of named entity recognition and classification. Computational Linguistics 2007 paper bib

    David Nadeau, Satoshi Sekine

  2. A Survey of Named Entity Recognition in Assamese and other Indian Languages. arXiv 2014 paper bib

    Gitimoni Talukdar, Pranjal Protim Borah, Arup Baruah

  3. A Survey on Deep Learning for Named Entity Recognition. arXiv 2018 paper bib

    Jing Li, Aixin Sun, Jianglei Han, Chenliang Li

  4. A Survey on Recent Advances in Named Entity Recognition from Deep Learning models. COLING 2019 paper bib

    Vikas Yadav, Steven Bethard

  5. Design Challenges and Misconceptions in Neural Sequence Labeling. COLING 2018 paper bib

    Jie Yang, Shuailong Liang, Yue Zhang

  6. Neural Entity Linking: A Survey of Models based on Deep Learning. arXiv 2020 paper bib

    Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, Chris Biemann

NLP Applications

  1. A Comprehensive Survey of Grammar Error Correction. arXiv 2020 paper bib

    Yu Wang, Yuelin Wang, Jie Liu, Zhuo Liu

  2. A Short Survey of Biomedical Relation Extraction Techniques. arXiv 2017 paper bib

    Elham Shahab

  3. A Survey on Assessing the Generalization Envelope of Deep Neural Networks at Inference Time for Image Classification. arXiv 2020 paper bib

    Julia Lust, Alexandru Paul Condurache

  4. A Survey on Natural Language Processing for Fake News Detection. LREC 2020 paper bib

    Ray Oshikawa, Jing Qian, William Yang Wang

  5. A Survey on Text Simplification. arXiv 2020 paper bib

    Punardeep Sikka, Manmeet Singh, Allen Pink, Vijay Mago

  6. Automatic Language Identification in Texts: A Survey. Journal of Artificial Intelligence Research 2019 paper bib

    Tommi Jauhiainen

  7. Disinformation Detection: A review of linguistic feature selection and classification models in news veracity assessments. arXiv 2019 paper bib

    Jillian Tompkins

  8. Extraction and Analysis of Fictional Character Networks: A Survey. ACM Computing Surveys 2019 paper bib

    Xavier Bost (LIA), Vincent Labatut (LIA)

  9. Fake News Detection using Stance Classification: A Survey. arXiv 2019 paper bib

    Anders Edelbo Lillie, Emil Refsgaard Middelboe

  10. Fake News: A Survey of Research, Detection Methods, and Opportunities. ACM 2018 paper bib

    Xinyi Zhou, Reza Zafarani

  11. Image Captioning based on Deep Learning Methods: A Survey. arXiv 2019 paper bib

    Yiyu Wang, Jungang Xu, Yingfei Sun, Ben He

  12. Referring Expression Comprehension: A Survey of Methods and Datasets. arXiv 2020 paper bib

    Yanyuan Qiao, Chaorui Deng, Qi Wu

  13. SECNLP: A Survey of Embeddings in Clinical Natural Language Processing. Journal of Biomedical Informatics 2019 paper bib

    Kalyan KS, S Sangeetha

  14. Survey of Text-based Epidemic Intelligence: A Computational Linguistic Perspective. ACM Computing Surveys 2019 paper bib

    Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cecile Paris, C Raina MacIntyre

  15. Survey on Publicly Available Sinhala Natural Language Processing Tools and Research. arxiv 2020 paper bib

    Nisansa de Silva

  16. Text Detection and Recognition in the Wild: A Review. arXiv 2020 paper bib

    Zobeir Raisi, Mohamed A. Naiel, Paul Fieguth, Steven Wardell, John Zelek

  17. Text Recognition in the Wild: A Survey. arXiv 2020 paper bib

    Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, Tianwei Wang

  18. Towards Improved Model Design for Authorship Identification: A Survey on Writing Style Understanding. arxiv 2020 paper bib

    Weicheng Ma, Ruibo Liu, Lili Wang, Soroush Vosoughi

Question Answering

  1. A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges. 2020 paper bib

    Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, Jian Sun

  2. A survey on question answering technology from an information retrieval perspective. Information ences 2011 paper bib

    Oleksandr Kolomiyets, Marie-Francine Moens

  3. A Survey on Why-Type Question Answering Systems. arXiv 2019 paper bib

    Manvi Breja, Sanjay Kumar Jain

  4. Core techniques of question answering systems over knowledge bases: a survey. Knowledge and Information Systems 2017 paper bib

    Dennis Diefenbach, Vanessa Lopez, Kamal Singh & Pierre Maret

  5. Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs. arXiv 2019 paper bib

    Nilesh Chakraborty,Denis Lukovnikov,Gaurav Maheshwari,Priyansh Trivedi,Jens Lehmann,Asja Fischer

  6. Survey of Visual Question Answering: Datasets and Techniques. arXiv 2017 paper bib

    Akshay Kumar Gupta

  7. Text-based Question Answering from Information Retrieval and Deep Neural Network Perspectives: A Survey. arXiv 2020 paper bib

    Zahra Abbasiyantaeb, Saeedeh Momtazi

  8. Tutorial on Answering Questions about Images with Deep Learning. Summer School on Integrating Vision and Language: Deep Learning 2016 paper bib

    Mateusz Malinowski, Mario Fritz

  9. Visual Question Answering using Deep Learning: A Survey and Performance Analysis. arXiv 2019 paper bib

    Yash Srivastava, Vaishnav Murali, Shiv Ram Dubey, Snehasis Mukherjee

Reading Comprehension

  1. A Survey on Machine Reading Comprehension Systems. arXiv 2020 paper bib

    Razieh Baradaran, Razieh Ghiasi, Hossein Amirkhani

  2. A Survey on Machine Reading Comprehension: Tasks, Evaluation Metrics, and Benchmark Datasets. 2020 paper bib

    Chengchang Zeng, Shaobo Li, Qin Li, Jie Hu, Jianjun Hu

  3. A Survey on Neural Machine Reading Comprehension. arXiv 2019 paper bib

    Boyu Qiu, Xu Chen, Jungang Xu, Yingfei Sun

  4. Machine Reading Comprehension: a Literature Review. arXiv 2019 paper bib

    Xin Zhang, An Yang, Sujian Li, Yizhong Wang

  5. Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond. Computational Linguistics 2020 paper bib

    Zhuosheng Zhang, Hai Zhao, Rui Wang

  6. Neural Machine Reading Comprehension: Methods and Trends. Applied ences 2019 paper bib

    Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, Weiming Zhang

Recommender Systems

  1. A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review 2019 paper bib

    Zeynep Batmaz, Ali Yurekli, Alper Bilge, Cihan Kaleli

  2. A Survey on Knowledge Graph-Based Recommender Systems. arXiv 2020 paper bib

    Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, Qing He

  3. Adversarial Machine Learning in Recommender Systems:State of the art and Challenges. arXiv 2020 paper bib

    Yashar Deldjoo, Tommaso Di Noia, Felice Antonio Merra

  4. Cross Domain Recommender Systems: A Systematic Literature Review. ACM Computing Surveys 2017 paper bib

    Muhammad Murad Khan,Roliana Ibrahim,Imran Ghani

  5. Deep Learning based Recommender System: A Survey and New Perspectives. ACM Computing Surveys 2019 paper bib

    Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay

  6. Deep Learning on Knowledge Graph for Recommender System: A Survey. arXiv 2020 paper bib

    Yang Gao, Yi-Fan Li, Yu Lin, Hang Gao, Latifur Khan

  7. Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends in Information Retrieval 2020 paper bib

    Yongfeng Zhang, Xu Chen

  8. Sequence-Aware Recommender Systems. ACM Computing Surveys 2018 paper bib

    Massimo Quadrana,Paolo Cremonesi,Dietmar Jannach

  9. Trust in Recommender Systems: A Deep Learning Perspective. arxiv 2020 paper bib

    Manqing Dong, Feng Yuan, Lina Yao, Xianzhi Wang, Xiwei Xu, Liming Zhu

  10. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works. International Journal of Computer Applications 2017 paper bib

    Ayush Singhal, Pradeep Sinha, Rakesh Pant

Resources and Evaluation

  1. A Short Survey on Sense-Annotated Corpora. International Conference on Language Resources and Evaluation 2020 paper bib

    Tommaso Pasini, José Camacho-Collados

  2. A Survey of Current Datasets for Vision and Language Research. EMNLP 2015 paper bib

    Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao (Kenneth) Huang, Lucy Vanderwende, Jacob Devlin, Michel Galley, Margaret Mitchell

  3. A Survey of Evaluation Metrics Used for NLG Systems. arXiv 2020 paper bib

    Ananya B. Sai, Akash Kumar Mohankumar, Mitesh M. Khapra

  4. A Survey of Word Embeddings Evaluation Methods. arXiv 2018 paper bib

    Amir Bakarov

  5. A Survey on Recognizing Textual Entailment as an NLP Evaluation. EMNLP 2020 paper bib

    Adam Poliak

  6. Critical Survey of the Freely Available Arabic Corpora. International Conference on Language Resources and Evaluation 2017 paper bib

    Wajdi Zaghouani

  7. Distributional Measures of Semantic Distance: A Survey. arXiv 2012 paper bib

    Saif Mohammad, Graeme Hirst

  8. Measuring Sentences Similarity: A Survey. Indian Journal of Science and Technology 2019 paper bib

    Mamdouh Farouk

  9. Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches. JAIR 2020 paper bib

    Shane Storks, Qiaozi Gao, Joyce Y. Chai

  10. Survey on Evaluation Methods for Dialogue Systems. Artificial Intelligence Review 2019 paper bib

    Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, Mark Cieliebak

  11. Survey on Publicly Available Sinhala Natural Language Processing Tools and Research. arXiv 2019 paper bib

    Nisansa de Silva

Semantics

  1. A survey of loss functions for semantic segmentation. arXiv 2020 paper bib

    Shruti Jadon

  2. Diachronic word embeddings and semantic shifts: a survey. COLING 2018 paper bib

    Andrey Kutuzov, Lilja Ovrelid, Terrence Szymanski, Erik Velldal

  3. Evolution of Semantic Similarity – A Survey. ACM Computing Surveys 2020 paper bib

    Dhivya Chandrasekaran, Vijay Mago

  4. Semantic search on text and knowledge bases. Foundations and trends in information retrieval 2016 paper bib

    Hannah Bast , Bjorn Buchhold, Elmar Haussmann

  5. Semantics, Modelling, and the Problem of Representation of Meaning – a Brief Survey of Recent Literature. arXiv 2014 paper bib

    Yarin Gal

  6. Survey of Computational Approaches to Lexical Semantic Change. arXiv 2019 paper bib

    Nina Tahmasebi, Lars Borin, Adam Jatowt

  7. The Knowledge Acquisition Bottleneck Problem in Multilingual Word Sense Disambiguation. IJCAI 2020 paper bib

    Tommaso Pasini

  8. Word sense disambiguation: a survey. International Journal of Control Theory and Computer Modeling 2015 paper bib

    Alok Ranjan Pal, Diganta Saha

Sentiment Analysis and Stylistic Analysis and Argument Mining

  1. A Comprehensive Survey on Aspect Based Sentiment Analysis. arXiv 2020 paper bib

    Kaustubh Yadav

  2. A Survey on Sentiment and Emotion Analysis for Computational Literary Studies. ZFDG 2018 paper bib

    Evgeny Kim, Roman Klinger

  3. Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research. arXiv 2020 paper bib

    Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Rada Mihalcea

  4. Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges. IEEE 2019 paper bib

    Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vivian Hu, Tingting Wang, Liang He

  5. Deep Learning for Sentiment Analysis : A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge 2018 paper bib

    Lei Zhang, Shuai Wang, Bing Liu

  6. Sentiment analysis for Arabic language: A brief survey of approaches and techniques. arXiv 2018 paper bib

    Mo’ath Alrefai, Hossam Faris, Ibrahim Aljarah

  7. Sentiment Analysis of Czech Texts: An Algorithmic Survey. International Conference on Agents and Artificial Intelligence 2019 paper bib

    Erion Cano, Ondřej Bojar

  8. Sentiment Analysis of Twitter Data: A Survey of Techniques. International Journal of Computer Applications 2016 paper bib

    Vishal.A.Kharde, Prof. Sheetal.Sonawane

  9. Sentiment Analysis on YouTube: A Brief Survey. MAGNT Research Report 2015 paper bib

    Muhammad Zubair Asghar, Shakeel Ahmad, Afsana Marwat, Fazal Masud Kundi

  10. Sentiment/Subjectivity Analysis Survey for Languages other than English. Social Network Analysis & Mining 2016 paper bib

    Mohammed Korayem, Khalifeh Aljadda, David Crandall

  11. Word Embeddings for Sentiment Analysis: A Comprehensive Empirical Survey. arXiv 2019 paper bib

    Erion Cano, Maurizio Morisio

Speech and Multimodality

  1. A Comprehensive Survey on Cross-modal Retrieval. arXiv 2016 paper bib

    Kaiye Wang

  2. A Multimodal Memes Classification: A Survey and Open Research Issues. arXiv 2020 paper bib

    Tariq Habib Afridi, Aftab Alam, Muhammad Numan Khan, Jawad Khan, Young-Koo Lee

  3. A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2019 paper bib

    Jorge Agnese, Jonathan Herrera, Haicheng Tao, Xingquan Zhu

  4. A Survey of Code-switched Speech and Language Processing. Elsevier 2019 paper bib

    Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Krishna Rallabandi, Alan W. Black

  5. A Survey of Recent DNN Architectures on the TIMIT Phone Recognition Task. TSD 2018 paper bib

    Josef Michalek, Jan Vanek

  6. A Survey of Voice Translation Methodologies - Acoustic Dialect Decoder. International Conference on Information 2016 paper bib

    Hans Krupakar, Keerthika Rajvel, Bharathi B, Angel Deborah S, Vallidevi Krishnamurthy

  7. Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures. IJCAI 2017 paper bib

    Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank Keller, Adrian Muscat, Barbara Plank

  8. Informed Machine Learning – A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv 2019 paper bib

    Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker

  9. Multimodal Machine Learning: A Survey and Taxonomy. IEEE 2019 paper bib

    Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency

  10. Speech and Language Processing. Speech and language processing 2019 paper bib

    Dan Jurafsky and James H. Martin

Summarization

  1. A Survey on Neural Network-Based Summarization Methods. arXiv 2018 paper bib

    Yue Dong

  2. Abstractive Summarization: A Survey of the State of the Art. AAAI 2019 paper bib

    Hui Lin, Vincent Ng

  3. Automated text summarisation and evidence-based medicine: A survey of two domains. arXiv 2017 paper bib

    Abeed Sarker, Diego Molla Aliod, Cecile Paris

  4. Automatic Keyword Extraction for Text Summarization: A Survey. arXiv 2017 paper bib

    Santosh Kumar Bharti, Korra Sathya Babu

  5. From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information. IJCAI 2020 paper bib

    Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan Zhao, Rui Yan

  6. Neural Abstractive Text Summarization with Sequence-to-Sequence Models: A Survey. arXiv 2018 paper bib

    Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, Chandan K. Reddy

  7. Recent automatic text summarization techniques: a survey. Artificial Intelligence Review 2016 paper bib

    Mahak Gambhir, Vishal Gupta

  8. Text Summarization Techniques: A Brief Survey. IJCAI 2017 paper bib

    Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut

Tagging Chunking Syntax and Parsing

  1. A Neural Entity Coreference Resolution Review. arXiv 2019 paper bib

    Nikolaos Stylianou, Ioannis Vlahavas

  2. A survey of cross-lingual features for zero-shot cross-lingual semantic parsing. arXiv 2019 paper bib

    Jingfeng Yang, Federico Fancellu, Bonnie L. Webber

  3. A Survey on Semantic Parsing. AKBC 2019 paper bib

    Aishwarya Kamath, Rajarshi Das

  4. The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers. IEEE 2018 paper bib

    Dongxiang Zhang, Lei Wang, Nuo Xu, Bing Tian Dai, Heng Tao Shen

Text Classification

  1. A Survey of Active Learning for Text Classification using Deep Neural Networks. arXiv 2020 paper bib

    Christopher Schroder, Andreas Niekler

  2. A Survey of Naïve Bayes Machine Learning approach in Text Document Classification. International Journal of Computer ence and Information Security 2010 paper bib

    K. A. Vidhya, G. Aghila

  3. A survey on phrase structure learning methods for text classification. International Journal on Natural Language Computing 2014 paper bib

    Reshma Prasad, Mary Priya Sebastian

  4. A Survey on Text Classification: From Shallow to Deep Learning. arXiv 2020 paper bib

    Qian Li, Hao Peng, Jianxin Li, Congyin Xia, Renyu Yang

  5. Deep Learning Based Text Classification: A Comprehensive Review. arXiv 2020 paper bib

    Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, Jianfeng Gao

  6. Text Classification Algorithms: A Survey. Information 2019 paper bib

    Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura E. Barnes, Donald E. Brown

The ML Paper List

Architectures

  1. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. arXiv 2020 paper bib

    Zewen Li, Wenjie Yang, Shouheng Peng, Fan Liu

  2. A Survey of End-to-End Driving: Architectures and Training Methods. arXiv 2020 paper bib

    Ardi Tampuu, Maksym Semikin, Naveed Muhammad, Dmytro Fishman, Tambet Matiisen

  3. A Survey on Latent Tree Models and Applications. Journal of Artificial Intelligence Research 2013 paper bib

    Raphaël Mourad, Christine Sinoquet, Nevin L. Zhang, Tengfei Liu, Philippe Leray

  4. An Attentive Survey of Attention Models. IJCAI 2019 paper bib

    Sneha Chaudhari, Gungor Polatkan, Rohan Ramanath, Varun Mithal

  5. Binary Neural Networks: A Survey. Pattern Recognition 2020 paper abib

    Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, Nicu Sebe

  6. Deep Echo State Network (DeepESN): A Brief Survey. arXiv 2017 paper bib

    Claudio Gallicchio, Alessio Micheli

  7. Efficient Transformers: A Survey. arXiv 2020 paper bib

    Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler

  8. Recent Advances in Convolutional Neural Networks. Computer ence 2018 paper bib

    Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, Tsuhan Chen

  9. Sum-product networks: A survey. IEEE 2020 paper bib

    Iago Paris, Raquel Sanchez-Cauce, Francisco Javier Díez

  10. Survey on the attention based RNN model and its applications in computer vision. arXiv 2016 paper bib

    Feng Wang, David M. J. Tax

  11. Understanding LSTM – a tutorial into Long Short-Term Memory Recurrent Neural Networks. arXiv 2019 paper bib

    Ralf C. Staudemeyer, Eric Rothstein Morris

AutoML

  1. A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions. arXiv 2020 paper bib

    Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, Xin Wang

  2. A Survey on Neural Architecture Search. arXiv 2019 paper bib

    Martin Wistuba, Ambrish Rawat, Tejaswini Pedapati

  3. AutoML: A Survey of the State-of-the-Art. Knowledge Based Systems 2019 paper bib

    Xin He, Kaiyong Zhao, Xiaowen Chu

  4. Benchmark and Survey of Automated Machine Learning Frameworks. Journal of Artificial Intelligence Research 2020 paper bib

    Marc-Andre Zoller, Marco F. Huber

  5. Neural Architecture Search: A Survey. Journal of Machine Learning Research 2019 paper bib

    Thomas Elsken, Jan Hendrik Metzen, Frank Hutter

Bayesian Methods

  1. A survey of non-exchangeable priors for Bayesian nonparametric models. IEEE 2015 paper bib

    Nicholas J. Foti, Sinead Williamson

  2. A Survey on Bayesian Deep Learning. 2020 paper bib

    Hao Wang, Dit-Yan Yeung

  3. Bayesian Neural Networks: An Introduction and Survey. arXiv 2020 paper bib

    Ethan Goan, Clinton Fookes

  4. Bayesian Nonparametric Space Partitions: A Survey. arXiv 2020 paper bib

    Xuhui Fan, Bin Li, Ling Luo, Scott A. Sisson

  5. Towards Bayesian Deep Learning: A Survey. arXiv 2016 paper bib

    Hao Wang, Dityan Yeung

Classification Clustering and Regression

  1. A Survey of Classification Techniques in the Area of Big Data. arXiv 2015 paper bib

    Praful Koturwar, Sheetal Girase, Debajyoti Mukhopadhyay

  2. A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges. arXiv 2020 paper bib

    Laura P. Swiler, Mamikon Gulian, Ari Frankel, Cosmin Safta, John D. Jakeman

  3. A Survey on Multi-View Clustering. arXiv 2017 paper bib

    Guoqing Chao, Shiliang Sun, Jinbo Bi

  4. Deep learning for time series classification: a review. Data Mining & Knowledge Discovery 2019 paper bib

    Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, Pierre-Alain Muller

  5. How Complex is your classification problem? A survey on measuring classification complexity. ACM 2019 paper bib

    Ana Carolina Lorena, Luis P F Garcia, Jens Lehmann, Marcilio C P Souto, Tin K Ho

Curriculum Learning

  1. Automatic Curriculum Learning For Deep RL: A Short Survey. IJCAI 2020 paper bib

    Remy Portelas, Cedric Colas, Lilian Weng, Katja Hofmann, Pierre-Yves Oudeyer

  2. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. arXiv 2020 paper bib

    Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone

Data Augmentation

  1. A survey on Image Data Augmentation for Deep Learning. Journal of Big Data 2019 paper bib

    Connor Shorten, Taghi M. Khoshgoftaar

  2. An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks. arXiv 2020 paper bib

    Brian Kenji Iwana, Seiichi Uchida

  3. Time Series Data Augmentation for Deep Learning: A Survey. arXiv 2020 paper bib

    Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, Huan Xu

Deep Learning

  1. A State-of-the-Art Survey on Deep Learning Theory and Architectures. mdpi 2019 paper bib

    Alom, Md Zahangir and Taha, Tarek M and Yakopcic, Chris and Westberg, Stefan and Sidike, Paheding and Nasrin, Mst Shamima and Hasan, Mahmudul and Van Essen, Brian C and Awwal, Abdul AS and Asari, Vijayan K

  2. A Survey of Deep Active Learning. arXiv 2020 paper bib

    Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, Xin Wang

  3. A Survey of Deep Learning for Data Caching in Edge Network. arXiv 2020 paper bib

    Yantong Wang, Vasilis Friderikos

  4. A Survey of Neuromorphic Computing and Neural Networks in Hardware. arXiv 2017 paper bib

    Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, James S. Plank

  5. A Survey on Concept Factorization: From Shallow to Deep Representation Learning. arXiv 2020 paper bib

    Zhao Zhang, Yan Zhang, Li Zhang, Shuicheng Yan

  6. A Survey on Deep Hashing Methods. arXiv 2020 paper bib

    Xiao Luo, Chong Chen, Huasong Zhong, Hao Zhang, Minghua Deng, Jianqiang Huang, Xiansheng Hua

  7. A survey on modern trainable activation functions. arXiv 2020 paper bib

    Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, Roberto Prevete

  8. Big Networks: A Survey. arXiv 2020 paper bib

    Hayat Dino Bedru, Shuo Yu, Xinru Xiao, Da Zhang, Liangtian Wan, He Guo, Feng Xia

  9. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE 2020 paper bib

    Xiaofei Wang, Yiwen Han, Victor C.M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen

  10. Deep learning. Nature 2015 paper bib

    Yann LeCun

  11. Deep Learning for 3D Point Cloud Understanding: A Survey. arXiv 2020 paper bib

    Haoming Lu, Humphrey Shi

  12. Deep Learning for Image Super-resolution: A Survey. IEEE 2019 paper bib

    Zhihao Wang, Jian Chen, Steven C.H. Hoi

  13. Deep Learning on Graphs: A Survey. IEEE 2020 paper bib

    Ziwei Zhang, Peng Cui, Wenwu Zhu

  14. Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective. arXiv 2019 paper bib

    Guan-Horng Liu, Evangelos A. Theodorou

  15. Geometric Deep Learning: Going beyond Euclidean data. IEEE 2017 paper bib

    Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

  16. Hands-on Bayesian Neural Networks - a Tutorial for DeepLearning Users. arXiv 2020 paper bib

    Laurent Valentin Jospin, et al

  17. Improving Deep Learning Models via Constraint-Based Domain Knowledge: a Brief Survey. arXiv 2020 paper bib

    Andrea Borghesi, Federico Baldo, Michela Milano

  18. Learning from Noisy Labels with Deep Neural Networks: A Survey. arXiv 2020 paper bib

    Hwanjun Song, Minseok Kim, Dongmin Park, Jae-Gil Lee

  19. Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey. arXiv 2020 paper bib

    Samuel Henrique Silva, Peyman Najafirad

  20. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020 paper bib

    Hossein Gholamalinezhad, Hossein Khosravi

  21. Privacy in Deep Learning: A Survey. arXiv 2020 paper bib

    Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Abhishek Singh, Ramesh Raskar, Hadi Esmaeilzadeh

  22. Review: Ordinary Differential Equations For Deep Learning. arXiv 2019 paper bib

    Xinshi Chen

  23. Short-term Traffic Prediction with Deep Neural Networks: A Survey. arXiv 2020 paper bib

    Kyungeun Lee, Moonjung Eo, Euna Jung, Yoonjin Yoon, Wonjong Rhee

  24. Survey of Dropout Methods for Deep Neural Networks. arXiv 2019 paper bib

    Alex Labach, Hojjat Salehinejad, Shahrokh Valaee

  25. Survey of Expressivity in Deep Neural Networks. NIPS 2016 paper bib

    Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohldickstein

  26. Survey of reasoning using Neural networks. arXiv 2017 paper bib

    Amit Sahu

  27. The Deep Learning Compiler: A Comprehensive Survey. arXiv 2020 paper bib

    Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Depei Qian

  28. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018 paper bib

    Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, Vijayan K Asari

  29. Time Series Forecasting With Deep Learning: A Survey. Philosophical Transactions of the Royal Society 2020 paper bib

    Bryan Lim, Stefan Zohren

Deep Reinforcement Learning

  1. A Brief Survey of Deep Reinforcement Learning. IEEE 2017 paper bib

    Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil A Bharath

  2. A Short Survey On Memory Based Reinforcement Learning. arXiv 2019 paper bib

    Dhruv Ramani

  3. A Short Survey on Probabilistic Reinforcement Learning. arXiv 2019 paper bib

    Reazul Hasan Russel

  4. A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress. arXiv 2018 paper bib

    Saurabh Arora, Prashant Doshi

  5. A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments. arXiv 2020 paper bib

    Sindhu Padakandla

  6. A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019 paper bib

    Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob Andreas, Edward Grefenstette, Shimon Whiteson, Tim Rocktäschel

  7. A Survey of Reinforcement Learning Techniques: Strategies, Recent Development, and Future Directions. arXiv 2020 paper bib

    Amit Kumar Mondal

  8. A survey on intrinsic motivation in reinforcement learning. arXiv 2019 paper bib

    Aubret, Arthur, Matignon, Laetitia, Hassas, Salima

  9. A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. Conference on Robot Learning 2019 paper bib

    Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, John Hallam

  10. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. Journal of Machine Learning Research 2020 paper bib

    Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone

  11. Deep Reinforcement Learning: An Overview. arXiv 2017 paper bib

    Yuxi Li

  12. Feature-Based Aggregation and Deep Reinforcement Learning: A Survey and Some New Implementations. IEEE 2019 paper bib

    Dimitri P. Bertsekas

  13. Model-Based Deep Reinforcement Learning for High-Dimensional Problems, a Survey. arXiv 2020 paper bib

    Aske Plaat, Walter Kosters, Mike Preuss

  14. Model-based Reinforcement Learning: {A} Survey. CoRR 2020 paper bib

    Thomas M. Moerland, Joost Broekens, Catholijn M. Jonker

  15. Reinforcement Learning for Combinatorial Optimization: A Survey. arxiv 2020 paper bib

    Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, Evgeny Burnaev

  16. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey. IEEE 2020 paper bib

    Wenshuai Zhao, Jorge Peña Queralta, Tomi Westerlund

Federated Learning

  1. A Survey towards Federated Semi-supervised Learning. arXiv 2020 paper bib

    Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang

  2. Advances and Open Problems in Federated Learning. arXiv 2019 paper bib

    Peter Kairouz, H Brendan Mcmahan, Brendan Avent, Aurelien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G L Doliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary A Garrett, Adria Gascon, Badih Ghazi, Phillip B Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgur, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X Yu, Han Yu, Sen Zhao

  3. Threats to Federated Learning: A Survey. Conference on Robot Learning 2020 paper bib

    Lingjuan Lyu, Han Yu, Qiang Yang

  4. Towards Utilizing Unlabeled Data in Federated Learning: A Survey and Prospective. arXiv 2020 paper bib

    Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang

Few-Shot and Zero-Shot Learning

  1. A Survey of Zero-Shot Learning: Settings, Methods, and Applications. ACM Transactions on Intelligent Systems and Technology 2019 paper bib

    Wei Wang,Vincent W. Zheng,Han Yu,Chunyan Miao

  2. Few-shot Learning: A Survey. arXiv 2019 paper bib

    Yaqing Wang, Quanming Yao

  3. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Computing Surveys 2019 paper bib

    Yaqing Wang, Quanming Yao, James Kwok, Lionel M. Ni

  4. Learning from Few Samples: A Survey. arXiv 2020 paper bib

    Nihar Bendre, Hugo Terashima Marín, Peyman Najafirad

  5. Learning from Very Few Samples: A Survey. arXiv 2020 paper bib

    Jiang Lu, Pinghua Gong, Jieping Ye, Changshui Zhang

General Machine Learning

  1. A survey of dimensionality reduction techniques. arXiv 2014 paper bib

    C.O.S. Sorzano, J. Vargas, A. Pascual Montano

  2. A Survey of Predictive Modelling under Imbalanced Distributions. arXiv 2015 paper bib

    Paula Branco, Luis Torgo, Rita Ribeiro

  3. A Survey on Activation Functions and their relation with Xavier and He Normal Initialization. arXiv 2020 paper bib

    Leonid Datta

  4. A Survey on Data Collection for Machine Learning: a Big Data – AI Integration Perspective. IEEE 2018 paper bib

    Yuji Roh, Geon Heo, Steven Euijong Whang

  5. A survey on feature weighting based K-Means algorithms. Journal of Classification 2016 paper bib

    Renato Cordeiro de Amorim

  6. A Survey on Graph Kernels. Applied Network ence 2020 paper bib

    Nils M. Kriege, Fredrik D. Johansson, Christopher Morris

  7. A Survey on Large-Scale Machine Learning. IEEE 2020 paper bib

    Meng Wang,Weijie Fu,Xiangnan He,Shijie Hao,Xindong Wu

  8. A Survey on Multi-output Learning. IEEE 2019 paper bib

    Donna Xu, Yaxin Shi, Ivor W. Tsang, Yew-Soon Ong, Chen Gong, Xiaobo Shen

  9. A Survey on Resilient Machine Learning. arXiv 2017 paper bib

    Atul Kumar, Sameep Mehta

  10. A Survey on Surrogate Approaches to Non-negative Matrix Factorization. Vietnam journal of mathematics 2018 paper bib

    Pascal Fernsel, Peter Maass

  11. A Tutorial on Network Embeddings. arXiv 2018 paper bib

    Haochen Chen, Bryan Perozzi, Rami Al-Rfou, Steven Skiena

  12. Adversarial Examples in Modern Machine Learning: A Review. arXiv 2019 paper bib

    Rey Reza Wiyatno, Anqi Xu, Ousmane Dia, Archy de Berker

  13. Algorithms Inspired by Nature: A Survey. arXiv 2019 paper bib

    Pranshu Gupta

  14. Deep Tree Transductions - A Short Survey. INNS Big Data and Deep Learning 2019 paper bib

    Davide Bacciu, Antonio Bruno

  15. Graph Representation Learning: A Survey. APSIPA Transactions on Signal and Information Processing 2020 paper bib

    Fenxiao Chen, Yuncheng Wang, Bin Wang, C.-C. Jay Kuo

  16. Heuristic design of fuzzy inference systems: A review of three decades of research. Engineering Applications of Artificial Intelligence 2019 paper bib

    Varun Ojha, Ajith Abraham, Vaclav Snasel

  17. Hierarchical Mixtures-of-Experts for Exponential Family Regression Models with Generalized Linear Mean Functions: A Survey of Approximation and Consistency Results. Uncertainty in Artificial Intelligence 2013 paper bib

    Wenxin Jiang, Martin A. Tanner

  18. Hyperbox based machine learning algorithms: A comprehensive survey. arXiv 2019 paper bib

    Thanh Tung Khuat, Dymitr Ruta, Bogdan Gabrys

  19. Imbalance Problems in Object Detection: A Review. IEEE 2020 paper bib

    Kemal Oksuz, Baris Can Cam, Sinan Kalkan, Emre Akbas

  20. Learning Representations of Graph Data – A Survey. arXiv 2019 paper bib

    Mital Kinderkhedia

  21. Machine Learning at the Network Edge: A Survey. arXiv 2019 paper bib

    M.G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Ananthanarayanan, Faraz Hussain

  22. Machine Learning for Spatiotemporal Sequence Forecasting: A Survey. arXiv 2018 paper bib

    Xingjian Shi, Dit-Yan Yeung

  23. Machine Learning in Network Centrality Measures: Tutorial and Outlook. ACM Computing Surveys 2019 paper bib

    Felipe Grando, Lisandro Zambenedetti Granville, Luís C. Lamb

  24. Machine Learning Testing: Survey, Landscapes and Horizons. IEEE 2019 paper bib

    Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu

  25. Machine Learning with World Knowledge: The Position and Survey. arXiv 2017 paper bib

    Yangqiu Song, Dan Roth

  26. Mean-Field Learning: a Survey. arXiv 2012 paper bib

    Hamidou Tembine, Raúl Tempone, Pedro Vilanova

  27. Multidimensional Scaling, Sammon Mapping, and Isomap: Tutorial and Survey. arXiv 2020 paper bib

    Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley

  28. Multimodal Machine Learning: A Survey and Taxonomy. arXiv 2017 paper bib

    Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency

  29. Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey. Autonomous Agents and Multi Agent Systems 2020 paper bib

    Roxana Rădulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé

  30. Narrative Science Systems: A Review. Computer ence 2015 paper bib

    Paramjot Kaur Sarao, Puneet Mittal, Rupinder Kaur

  31. Network Representation Learning: A Survey. IEEE 2020 paper bib

    Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang

  32. Relational inductive biases, deep learning, and graph networks. arXiv 2018 paper bib

    Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu

  33. Relational Representation Learning for Dynamic (Knowledge) Graphs: A Survey. JMLR 2019 paper bib

    Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, Pascal Poupart

  34. Self-supervised Learning: Generative or Contrastive. arXiv 2020 paper bib

    Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, Jie Tang

  35. Statistical Queries and Statistical Algorithms: Foundations and Applications. arXiv 2020 paper bib

    Lev Reyzin

  36. Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey. Eprint Arxiv 2011 paper bib

    Yang Zhou

  37. Survey on Feature Selection. Computer ence 2015 paper bib

    Tarek Amr Abdallah, Beatriz de La Iglesia

  38. Survey on Five Tribes of Machine Learning and the Main Algorithms. Software Guide 2019 paper bib

    LI Xu-ran, DING Xiao-hong

  39. Survey: Machine Learning in Production Rendering. arXiv 2020 paper bib

    Shilin Zhu

  40. The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. Theory of Evolutionary Computation 2018 paper bib

    Dirk Sudholt

  41. Tutorial on Variational Autoencoders. arXiv 2016 paper bib

    Carl Doersch

  42. Unsupervised Cross-Lingual Representation Learning. ACL 2019 paper bib

    Sebastian Ruder, Anders Søgaard, Ivan Vulic

  43. Verification for Machine Learning, Autonomy, and Neural Networks Survey. arXiv 2018 paper bib

    Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel Rosenfeld, Taylor T. Johnson

Generative Adversarial Networks

  1. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. arXiv 2020 paper bib

    Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, Jieping Ye

  2. A Survey on Generative Adversarial Networks: Variants, Applications, and Training. arXiv 2020 paper bib

    Abdul Jabbar, Xi Li, Bourahla Omar

  3. Adversarial Examples on Object Recognition: A Comprehensive Survey. arXiv 2020 paper bib

    Alex Serban, Erik Poll, Joost Visser

  4. Generative Adversarial Networks: A Survey and Taxonomy. arXiv 2019 paper bib

    Zhengwei Wang, Qi She, Tomas E Ward

  5. Generative Adversarial Networks: An Overview. IEEE 2018 paper bib

    Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, Anil A Bharath

  6. How Generative Adversarial Nets and its variants Work: An Overview of GAN. arXiv 2017 paper bib

    Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, Sungroh Yoon

  7. Stabilizing Generative Adversarial Network Training: A Survey. arXiv 2020 paper bib

    Maciej Wiatrak, Stefano V. Albrecht, Andrew Nystrom

Graph Neural Networks

  1. A Comprehensive Survey on Graph Neural Networks. IEEE 2019 paper bib

    Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu

  2. A Survey on The Expressive Power of Graph Neural Networks. arXiv 2020 paper bib

    Ryoma Sato

  3. Adversarial Attack and Defense on Graph Data: A Survey. arXiv 2018 paper bib

    Lichao Sun, Ji Wang, Philip S. Yu, Bo Li

  4. Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks. arXiv 2020 paper bib

    Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Chang-Tien Lu

  5. Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey. arXiv 2020 paper bib

    Joakim Skarding, Bogdan Gabrys, Katarzyna Musial

  6. Graph embedding techniques, applications, and performance: A survey. Knowledge Based Systems 2018 paper bib

    Palash Goyal, Emilio Ferrara

  7. Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective. arXiv 2020 paper bib

    Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, Moshe Vardi

  8. Graph Neural Networks: A Review of Methods and Applications. arXiv 2018 paper bib

    Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun

  9. Introduction to Graph Neural Networks. IEEE 2020 paper bib

    Zhiyuan Liu, Jie Zhou

  10. Tackling Graphical NLP problems with Graph Recurrent Networks. arXiv 2019 paper bib

    Linfeng Song

Interpretability and Analysis

  1. A Survey Of Methods For Explaining Black Box Models. ACM Computing Surveys 2018 paper bib

    Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, Dino Pedreschi

  2. A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability. Computer ence 2018 paper bib

    Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, Xinping Yi

  3. Causal Interpretability for Machine Learning – Problems, Methods and Evaluation. Sigkdd Explorations 2020 paper bib

    Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, Huan Liu

  4. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion 2020 paper bib

    Alejandro Barredo Arrieta, Natalia Diazrodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gillopez, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco Herrera

  5. Explainable Reinforcement Learning: A Survey. CD-MAKE 2020 2020 paper bib

    Erika Puiutta, Eric M. S. P. Veith

  6. Foundations of Explainable Knowledge-Enabled Systems. Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges/arXiv 2020 paper bib

    Shruthi Chari

  7. How Generative Adversarial Networks and Their Variants Work: An Overview. IEEE 2017 paper bib

    Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, Sungroh Yoon

  8. Language (Technology) is Power: A Critical Survey of “Bias” in NLP. Association for Computational Linguistics 2020 paper bib

    Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach

  9. Opportunities and Challenges in Explainable Artificial Intelligence(XAI): A Survey. CoRR 2020 paper bib

    Arun Das, Paul Rad

  10. Survey & Experiment: Towards the Learning Accuracy. arXiv 2010 paper bib

    Zeyuan Allen Zhu

  11. Survey of explainable machine learning with visual and granular methods beyond quasi-explanations. arXiv 2020 paper bib

    Kovalerchuk, Boris and Ahmad, Muhammad Aurangzeb and Teredesai, Ankur

  12. Understanding Neural Networks via Feature Visualization: A survey. arXiv 2019 paper bib

    Anh Nguyen, Jason Yosinski, Jeff Clune

  13. Visual interpretability for deep learning: a survey. Frontiers of Information Technology & Electronic Engineering 2018 paper bib

    Quanshi Zhang, Songchun Zhu

  14. Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons. arXiv 2019 paper bib

    Huiru Gao, Haifeng Nie, Ke Li

  15. When will the mist clear? On the Interpretability of Machine Learning for Medical Applications: a survey. arxiv 2020 paper bib

    Antonio-Jesús Banegas-Luna, Jorge Peña-García, Adrian Iftene, Fiorella Guadagni, Patrizia Ferroni, Noemi Scarpato, Fabio Massimo Zanzotto, Andrés Bueno-Crespo, Horacio Pérez-Sánchez

Meta Learning

  1. A Comprehensive Overview and Survey of Recent Advances in Meta-Learning. arXiv 2020 paper bib

    Huimin Peng

  2. Meta-learning for Few-shot Natural Language Processing: A Survey. arXiv 2020 paper bib

    Wenpeng Yin

  3. Meta-Learning in Neural Networks: A Survey. arXiv 2020 paper bib

    Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, Amos J. Storkey

  4. Meta-Learning: A Survey. arXiv 2018 paper bib

    Joaquin Vanschoren

Metric Learning

  1. A Survey on Metric Learning for Feature Vectors and Structured Data. arXiv 2013 paper bib

    Aurelien Bellet, Amaury Habrard, Marc Sebban

  2. A Tutorial on Distance Metric Learning: Mathematical Foundations, Algorithms and Experiments. arXiv 2018 paper bib

    Juan Luis Suarez, Salvador Garcia, Francisco Herrera

ML Applications

  1. 360 degree view of cross-domain opinion classification: a survey. Artificial Intelligence Review 2020 paper bib

    Rahul Kumar Singh,Manoj Kumar Sachan,R. B. Patel

  2. A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications. Neural Networks 2019 paper bib

    Leonardo Enzo Brito da Silva, Islam Elnabarawy, Donald C. Wunsch II

  3. A Survey of Machine Learning Methods and Challenges for Windows Malware Classification. arXiv 2020 paper bib

    Edward Raff, Charles Nicholas

  4. A survey on applications of augmented, mixed andvirtual reality for nature and environment. arXiv 2020 paper bib

    Jason Rambach, Gergana Lilligreen, Alexander Sch盲fer, Ramya Bankanal, Alexander Wiebel, Didier Stricker

  5. A survey on deep hashing for image retrieval. arXiv 2020 paper bib

    Xiaopeng Zhang

  6. A Survey on Deep Learning based Brain-Computer Interface: Recent Advances and New Frontiers. arXiv 2019 paper bib

    Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica J M Monaghan, David Mcalpine, Yu Zhang

  7. A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis 2017 paper bib

    Geert J S Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud A A Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A W M Van Der Laak, Bram Van Ginneken, Clara I Sanchez

  8. A Survey on Machine Learning Applied to Dynamic Physical Systems. arxiv 2020 paper bib

    Sagar Verma

  9. Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial. IEEE 2019 paper bib

    Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, Mérouane Debbah

  10. How Developers Iterate on Machine Learning Workflows – A Survey of the Applied Machine Learning Literature. arXiv 2018 paper bib

    Doris Xin, Litian Ma, Shuchen Song, Aditya G. Parameswaran

  11. Local Differential Privacy and Its Applications: A Comprehensive Survey. arXiv 2020 paper bib

    Mengmeng Yang, Lingjuan Lyu, Jun Zhao, Tianqing Zhu, Kwok-Yan Lam

  12. Machine Learning Aided Static Malware Analysis: A Survey and Tutorial. arXiv 2018 paper bib

    Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, Katrin Franke

  13. Machine Learning for Survival Analysis: A Survey. arXiv 2017 paper bib

    Ping Wang, Yan Li, Chandan K. Reddy

  14. The Creation and Detection of Deepfakes:A Survey. arXiv 2020 paper bib

    Yisroel Mirsky, Wenke Lee

  15. The Threat of Adversarial Attacks on Machine Learning in Network Security – A Survey. arxiv 2019 paper bib

    Olakunle Ibitoye, Rana Abou-Khamis, Ashraf Matrawy, M. Omair Shafiq

Model Compression and Acceleration

  1. A Survey of Model Compression and Acceleration for Deep Neural Networks. IEEE 2017 paper bib

    Yu Cheng, Duo Wang, Pan Zhou, Tao Zhang

  2. A Survey on Methods and Theories of Quantized Neural Networks. arXiv 2018 paper bib

    Yunhui Guo

  3. An Overview of Neural Network Compression. arXiv 2020 paper bib

    James O' Neill

  4. Compression of Deep Learning Models for Text: A Survey. arXiv 2020 paper bib

    Manish Gupta, Puneet Agrawal

  5. Knowledge Distillation: A Survey. arXiv 2020 paper bib

    Jianping Gou, Baosheng Yu, Stephen John Maybank, Dacheng Tao

  6. Machine Learning at the Network Edge: A Survey. arxiv 2020 paper bib

    M.G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Ananthanarayanan, Faraz Hussain

  7. Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey. arXiv 2020 paper bib

    Jiayi Liu, Samarth Tripathi, Unmesh Kurup, Mohak Shah

  8. Survey of Machine Learning Accelerators. IEEE 2020 paper bib

    Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, Jeremy Kepner

Multi-Task and Multi-View Learning

  1. A Brief Review on Multi-Task Learning. Multimedia Tools and Applications 2018 paper bib

    Kimhan Thung, Chong Yaw Wee

  2. A Survey on Multi-Task Learning. arXiv 2017 paper bib

    Yu Zhang, Qiang Yang

  3. A Survey on Multi-view Learning. Computer ence 2013 paper bib

    Chang Xu, Dacheng Tao, Chao Xu

  4. An overview of multi-task learning. National Science Review 2018 paper bib

    Yu Zhang, Qiang Yang

  5. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017 paper bib

    Sebastian Ruder

  6. Multi-Task Learning for Dense Prediction Tasks: A Survey. arxiv 2020 paper bib

    Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai, Luc Van Gool

  7. Multi-Task Learning with Deep Neural Networks: A Survey. arXiv 2020 paper bib

    Michael Crawshaw

  8. Revisiting Multi-Task Learning in the Deep Learning Era. arXiv 2020 paper bib

    Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, Dengxin Dai, Luc Van Gool

Online Learning

  1. A Survey of Algorithms and Analysis for Adaptive Online Learning. Journal of Machine Learning Research 2017 paper bib

    H. Brendan McMahan

  2. Online Learning: A Comprehensive Survey. arXiv 2018 paper bib

    Steven C.H. Hoi, Doyen Sahoo, Jing Lu, Peilin Zhao

  3. Preference-based Online Learning with Dueling Bandits: A Survey. arXiv 2018 paper bib

    Robert Busa-Fekete, Eyke Hüllermeier, Adil El Mesaoudi-Paul

Optimization

  1. A Survey of Optimization Methods from a Machine Learning Perspective. IEEE 2019 paper bib

    Shiliang Sun, Zehui Cao, Han Zhu, Jing Zhao

  2. A Systematic and Meta-analysis Survey of Whale Optimization Algorithm. Computational Intelligence and Neuroscience 2019 paper bib

    Hardi M. Mohammed, Shahla U. Umar, Tarik A. Rashid

  3. An overview of gradient descent optimization algorithms. arXiv 2017 paper bib

    Sebastian Ruder

  4. Convex Optimization Overview. IEEE 2008 paper bib

    Kolter Zico, Lee Honglak

  5. Gradient Boosting Machine: A Survey. arXiv 2019 paper bib

    Zhiyuan He, Danchen Lin, Thomas Lau, Mike Wu

  6. Optimization for deep learning: theory and algorithms. arXiv 2019 paper bib

    Ruoyu Sun

  7. Optimization Models for Machine Learning: A Survey. arXiv 2019 paper bib

    Claudio Gambella, Bissan Ghaddar, Joe Naoum-Sawaya

  8. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning & Knowledge Extraction 2019 paper bib

    Saptarshi Sengupta, Sanchita Basak, Richard Alan Peters II

Semi-Supervised and Unsupervised Learning

  1. A brief introduction to weakly supervised learning. National Science Review 2018 paper bib

    Zhihua Zhou

  2. A Survey of Unsupervised Dependency Parsing. COLING 2020 paper bib

    Wenjuan Han, Yong Jiang, Hwee Tou Ng, Kewei Tu

  3. A survey on Semi-, Self- and Unsupervised Learning for Image Classification. 2020 paper bib

    Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, Reinhard Koch

  4. A Survey on Semi-Supervised Learning Techniques. International Journal of Computer Trends & Technology 2014 paper bib

    V. Jothi Prakash, Dr. L.M. Nithya

  5. Improvability Through Semi-Supervised Learning: A Survey of Theoretical Results. arXiv 2019 paper bib

    Alexander Mey, Marco Loog

  6. Learning from positive and unlabeled data: a survey. Machine Learning 2020 paper bib

    Jessa Bekker, Jesse Davis

Transfer Learning

  1. A Comprehensive Survey on Transfer Learning. arXiv 2019 paper bib

    Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, Qing He

  2. A Survey of Unsupervised Deep Domain Adaptation. arXiv 2020 paper bib

    Garrett Wilson, Diane J. Cook

  3. A Survey on Deep Transfer Learning. International Conference on Artificial Neural Networks 2018 paper bib

    Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, Chunfang Liu

  4. A survey on domain adaptation theory: learning bounds and theoretical guarantees. arXiv 2020 paper bib

    Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Younès Bennani

  5. A Survey on Transfer Learning in Natural Language Processing. arXiv 2020 paper bib

    Zaid Alyafeai, Maged Saeed AlShaibani, Irfan Ahmad

  6. Evolution of transfer learning in natural language processing. arXiv 2019 paper bib

    Aditya Malte, Pratik Ratadiya

  7. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv 2019 paper bib

    Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

  8. Neural Unsupervised Domain Adaptation in NLP - A Survey. arXiv 2020 paper bib

    Alan Ramponi, Barbara Plank

  9. Overcoming Negative Transfer: A Survey. arxiv 2020 paper bib

    Wen Zhang, Lingfei Deng, Dongrui Wu

  10. Transfer Adaptation Learning: A Decade Survey. arXiv 2019 paper bib

    Lei Zhang

  11. Transfer Learning in Deep Reinforcement Learning: A Survey. arXiv 2020 paper bib

    Zhuangdi Zhu, Kaixiang Lin, Jiayu Zhou

Trustworthy Machine Learning

  1. A Survey on Bias and Fairness in Machine Learning. arXiv 2019 paper bib

    Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, Aram Galstyan

  2. Differential Privacy and Machine Learning: a Survey and Review. Eprint Arxiv 2014 paper bib

    Zhanglong Ji, Zachary C. Lipton, Charles Elkan

  3. Tutorial: Safe and Reliable Machine Learning. ACM 2019 paper bib

    Suchi Saria, Adarsh Subbaswamy

Team Members

The project is maintained by

Ziyang Wang, Nuo Xu, Bei Li, Yinqiao Li, Quan Du, Tong Xiao, and Jingbo Zhu

Natural Language Processing Lab., School of Computer Science and Engineering, Northeastern University

NiuTrans Research

Please feel free to contact us if you have any questions (wangziyang [at] stumail.neu.edu.cn or libei_neu [at] outlook.com).

Acknowledge

We would like to thank the people who have contributed to this project. They are

Shuhan Zhou, Xin Zeng, Laohu Wang, Chenglong Wang, Xiaoqian Liu, Xuanjun Zhou, Jingnan Zhang, Yongyu Mu, Zefan Zhou, Yanhong Jiang, Xinyang Zhu, Xingyu Liu, Dong Bi, Ping Xu, Zijian Li, Fengning Tian, Hui Liu, Kai Feng, Yuhao Zhang, Chi Hu, Di Yang, Lei Zheng, Hexuan Chen, Zeyang Wang, Tengbo Liu, Xia Meng, Weiqiao Shan, Tao Zhou, Runzhe Cao, Yingfeng Luo, Binghao Wei, Wandi Xu, Yan Zhang, Yichao Wang, Mengyu Ma, Zihao Liu

comments powered by Disqus